Exposure to adversity during early life is a risk factor for the development of different mood and psychiatric disorders, including depressive-like behaviors. Here, neonatal mice were temporarily but repeatedly (day 1 to day 13) separated from mothers and placed in a testing environment containing a layer of odorless clean bedding (CB). We assessed in adult animals the impact of this early experience on binding sites and mRNA expression of ?1-adrenergic receptor subtypes, heat shock proteins (HSPs) and proapoptotic and antiapoptotic members of the Bcl-2 family proteins in different brain regions involved in processing of olfactory information and rewarding stimuli. We found that repeated exposure to CB experience produced anhedonic-like behavior in terms of reduced saccharin intake and ?1-adrenoceptor downregulation in piriform and somatosensory cortices, hippocampus, amygdala and discrete thalamic nuclei. We also found a selective decrease of ?1B-adrenoceptor binding sites in the cingulate cortex and hippocampus and an increase of hippocampal ?1A and ?1B receptor, but not of ?1D-adrenoceptor, mRNA levels. Moreover, while a significant decrease of antiapoptotic heat shock proteins Hsp72 and Hsp90 was identified in the prefrontal cortex, a parallel increase of antiapoptotic members of Bcl-2 family proteins was found at the hippocampal level. Together, these data provide evidence that the early exposure to CB experience produced enduring downregulation of ?1-adrenoceptors in the prefrontal-limbic forebrain/limbic midbrain network, which plays a key role in the processing of olfactory information and reaction to rewarding stimuli. Finally, these data show that CB experience can "prime" the hippocampal circuitry and promote the expression of antiapoptotic factors that can confer potential neuroprotection to subsequent adversity.

Brief maternal separation affects brain alpha1-adrenoceptors and apoptotic signaling in adult mice

Coccurello R;D'Amato FR;
2014

Abstract

Exposure to adversity during early life is a risk factor for the development of different mood and psychiatric disorders, including depressive-like behaviors. Here, neonatal mice were temporarily but repeatedly (day 1 to day 13) separated from mothers and placed in a testing environment containing a layer of odorless clean bedding (CB). We assessed in adult animals the impact of this early experience on binding sites and mRNA expression of ?1-adrenergic receptor subtypes, heat shock proteins (HSPs) and proapoptotic and antiapoptotic members of the Bcl-2 family proteins in different brain regions involved in processing of olfactory information and rewarding stimuli. We found that repeated exposure to CB experience produced anhedonic-like behavior in terms of reduced saccharin intake and ?1-adrenoceptor downregulation in piriform and somatosensory cortices, hippocampus, amygdala and discrete thalamic nuclei. We also found a selective decrease of ?1B-adrenoceptor binding sites in the cingulate cortex and hippocampus and an increase of hippocampal ?1A and ?1B receptor, but not of ?1D-adrenoceptor, mRNA levels. Moreover, while a significant decrease of antiapoptotic heat shock proteins Hsp72 and Hsp90 was identified in the prefrontal cortex, a parallel increase of antiapoptotic members of Bcl-2 family proteins was found at the hippocampal level. Together, these data provide evidence that the early exposure to CB experience produced enduring downregulation of ?1-adrenoceptors in the prefrontal-limbic forebrain/limbic midbrain network, which plays a key role in the processing of olfactory information and reaction to rewarding stimuli. Finally, these data show that CB experience can "prime" the hippocampal circuitry and promote the expression of antiapoptotic factors that can confer potential neuroprotection to subsequent adversity.
2014
Istituto di Biologia Cellulare e Neurobiologia - IBCN - Sede Monterotondo Scalo
Istituto di Biochimica e Biologia Cellulare - IBBC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/18154
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? ND
social impact