We present first principles calculations of the potential energy surface for the diffusion of a single hydrogen atom on Si(100)2 × 1. Surface relaxation is found to be very important for the energetics of diffusion. A strong anisotropy is predicted for hydrogen motion: H should diffuse mainly along dimer rows, where activation energies are ~ 1.3 eV, while the barrier for row-to-row hopping is ~ 0.5 eV higher. Our results indicate that diffusion can be considered a fast process compared to H2 recombinative desorption.

ENERGETICS OF ATOMIC-HYDROGEN DIFFUSION ON SI(100)

1993

Abstract

We present first principles calculations of the potential energy surface for the diffusion of a single hydrogen atom on Si(100)2 × 1. Surface relaxation is found to be very important for the energetics of diffusion. A strong anisotropy is predicted for hydrogen motion: H should diffuse mainly along dimer rows, where activation energies are ~ 1.3 eV, while the barrier for row-to-row hopping is ~ 0.5 eV higher. Our results indicate that diffusion can be considered a fast process compared to H2 recombinative desorption.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/181806
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact