Polarization purity is one of the most stringent requirements for future radio telescopes. To evaluate polarization ratio levels of large phased arrays involving thousands of elements, a full wave simulation approach is very time consuming, when feasible. Commonly, large arrays are approximated by infinite array approach or studied by single (isolated) element analysis. Being simplified approaches, part of the effect of the array configuration is missed resulting in analysis error. A study of this effect for regular arrays based on the intrinsic cross-polarization ratio (IXR) is presented.

Polarization Analysis and Evaluation for Radio Astronomy Aperture Array Antennas

G Virone;
2013

Abstract

Polarization purity is one of the most stringent requirements for future radio telescopes. To evaluate polarization ratio levels of large phased arrays involving thousands of elements, a full wave simulation approach is very time consuming, when feasible. Commonly, large arrays are approximated by infinite array approach or studied by single (isolated) element analysis. Being simplified approaches, part of the effect of the array configuration is missed resulting in analysis error. A study of this effect for regular arrays based on the intrinsic cross-polarization ratio (IXR) is presented.
2013
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/182299
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact