Recently it has been demonstrated that digital holography is a powerful means allowing imaging of both amplitude and phase objects in turbid flowing media. However, in quasi-static turbid microfluidics, multiple scattering contributions through the colloids superimpose coherently to the recording device, resulting in speckle noise and hindering a clear vision of the objects. In this Letter we exploit the Brownian motion of the colloidal particles to get multiple uncorrelated holograms, and we combine them to reduce the speckle contrast. In this way we get a multi-look gain without losing image resolution. (C) 2012 Optical Society of America

Clear coherent imaging in turbid microfluidics by multiple holographic acquisitions

Bianco Vittorio;Paturzo Melania;Finizio Andrea;Ferraro Pietro
2012

Abstract

Recently it has been demonstrated that digital holography is a powerful means allowing imaging of both amplitude and phase objects in turbid flowing media. However, in quasi-static turbid microfluidics, multiple scattering contributions through the colloids superimpose coherently to the recording device, resulting in speckle noise and hindering a clear vision of the objects. In this Letter we exploit the Brownian motion of the colloidal particles to get multiple uncorrelated holograms, and we combine them to reduce the speckle contrast. In this way we get a multi-look gain without losing image resolution. (C) 2012 Optical Society of America
2012
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI
Istituto Nazionale di Ottica - INO
DIGITAL HOLOGRAPHY
IMPROVEMENT
MICROSCOPY
SPECKLE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/182307
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? ND
social impact