A major issue so far for digital holography is the low spatial resolution generally achieved. The numerical aperture is limited by the area of currently available detectors, such as CCD sensors, which is significantly lower than that of a holographic plate. This is an even more severe constraint when IR sensors such as microbolometers are taken into account. In order to increase the numerical aperture of such systems, we developed an automatic technique which is capable of recording several holograms and of stitching them together, obtaining a digital hologram with a synthetic but larger numerical aperture. In this way we show that more detail can be resolved and a wider parallax angle can be achieved. The method is demonstrated for visible as well IR digital holography, recording and displaying large size objects. (C) 2012 Optical Society of America
An automatic method for assembling a large synthetic aperture digital hologram
Pelagotti A;Paturzo M;Locatelli M;Geltrude A;Meucci R;Finizio A;Ferraro P
2012
Abstract
A major issue so far for digital holography is the low spatial resolution generally achieved. The numerical aperture is limited by the area of currently available detectors, such as CCD sensors, which is significantly lower than that of a holographic plate. This is an even more severe constraint when IR sensors such as microbolometers are taken into account. In order to increase the numerical aperture of such systems, we developed an automatic technique which is capable of recording several holograms and of stitching them together, obtaining a digital hologram with a synthetic but larger numerical aperture. In this way we show that more detail can be resolved and a wider parallax angle can be achieved. The method is demonstrated for visible as well IR digital holography, recording and displaying large size objects. (C) 2012 Optical Society of AmericaI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.