By calculating the density response function we identify the excitation spectrum of a Bose-Einstein condensate with equal Rashba and Dresselhaus spin-orbit coupling. We find that the velocity of sound along the direction of spin-orbit coupling is deeply quenched and vanishes when one approaches the second-order phase transition between the plane-wave and the zero momentum quantum phases. We also point out the emergence of a roton minimum in the excitation spectrum for small values of the Raman coupling, providing the onset of the transition to the stripe phase. Our findings point out the occurrence of a strong anisotropy in the dynamic behavior of the gas. A hydrodynamic description accounting for the collective oscillations in both uniform and harmonically trapped gases is also derived.

Anisotropic dynamics of a spin-orbit-coupled Bose-Einstein condensate

Martone Giovanni I;Stringari Sandro
2012

Abstract

By calculating the density response function we identify the excitation spectrum of a Bose-Einstein condensate with equal Rashba and Dresselhaus spin-orbit coupling. We find that the velocity of sound along the direction of spin-orbit coupling is deeply quenched and vanishes when one approaches the second-order phase transition between the plane-wave and the zero momentum quantum phases. We also point out the emergence of a roton minimum in the excitation spectrum for small values of the Raman coupling, providing the onset of the transition to the stripe phase. Our findings point out the occurrence of a strong anisotropy in the dynamic behavior of the gas. A hydrodynamic description accounting for the collective oscillations in both uniform and harmonically trapped gases is also derived.
2012
Istituto Nazionale di Ottica - INO
GAS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/182575
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact