The propagation of light pulses through negative group velocity media is known to give rise to a number of paradoxical situations that seem to violate causality. The solution of these paradoxes has triggered the investigation of a number of interesting and unexpected features of light propagation. Here, we report a combined theoretical and experimental study of the ring-down oscillations in optical cavities filled with a medium with a sufficiently negative frequency dispersion to give a negative round-trip group delay time. We theoretically anticipate that causality imposes the existence of additional resonance peaks in the cavity transmission, resulting in a non-exponential decay of the cavity field and in a breakdown of the cavity decay rate concept. Our predictions are validated by simulations and by an experiment using a room-temperature gas of metastable helium atoms in the detuned electromagnetically induced transparency regime as the cavity medium.

Anomalous ring-down effects and breakdown of the decay rate concept in optical cavities with negative group delay

Carusotto I;
2012

Abstract

The propagation of light pulses through negative group velocity media is known to give rise to a number of paradoxical situations that seem to violate causality. The solution of these paradoxes has triggered the investigation of a number of interesting and unexpected features of light propagation. Here, we report a combined theoretical and experimental study of the ring-down oscillations in optical cavities filled with a medium with a sufficiently negative frequency dispersion to give a negative round-trip group delay time. We theoretically anticipate that causality imposes the existence of additional resonance peaks in the cavity transmission, resulting in a non-exponential decay of the cavity field and in a breakdown of the cavity decay rate concept. Our predictions are validated by simulations and by an experiment using a room-temperature gas of metastable helium atoms in the detuned electromagnetically induced transparency regime as the cavity medium.
2012
Istituto Nazionale di Ottica - INO
ELECTROMAGNETICALLY INDUCED TRANSPARENCY
PULSE-PROPAGATION
DISPERSING MEDIA
LIGHT-PULSE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/182584
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 18
social impact