An accurate control of the optical properties of single crystal diamond during microfabrication processes such as ion implantation plays a crucial role in the engineering of integrated photonic devices. In this work we present a systematic study of the variation of both real and imaginary parts of the refractive index of single crystal diamond, when damaged with 2 and 3 MeV protons at low-medium fluences (range: 10(15) - 10(17) cm(-2)). After implanting in 125 x 125 mu m(2) areas with a scanning ion microbeam, the variation of optical pathlength of the implanted regions was measured with laser interferometric microscopy, while their optical transmission was studied using a spectrometric set-up with micrometric spatial resolution. On the basis of a model taking into account the strongly non-uniform damage profile in the bulk sample, the variation of the complex refractive index as a function of damage density was evaluated. (c) 2012 Optical Society of America

Complex refractive index variation in proton-damaged diamond

Sordini A;Vannoni M
2012

Abstract

An accurate control of the optical properties of single crystal diamond during microfabrication processes such as ion implantation plays a crucial role in the engineering of integrated photonic devices. In this work we present a systematic study of the variation of both real and imaginary parts of the refractive index of single crystal diamond, when damaged with 2 and 3 MeV protons at low-medium fluences (range: 10(15) - 10(17) cm(-2)). After implanting in 125 x 125 mu m(2) areas with a scanning ion microbeam, the variation of optical pathlength of the implanted regions was measured with laser interferometric microscopy, while their optical transmission was studied using a spectrometric set-up with micrometric spatial resolution. On the basis of a model taking into account the strongly non-uniform damage profile in the bulk sample, the variation of the complex refractive index as a function of damage density was evaluated. (c) 2012 Optical Society of America
2012
Istituto Nazionale di Ottica - INO
SINGLE-CRYSTAL DIAMOND
ION-IMPLANTED DIAMOND
CHANNEL WAVE-GUIDES
VOLUME EXPANSION
SET-UP
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/182977
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? ND
social impact