Complex and rugged topography induces large variations in erosion and sediment delivery in the headwaters of alpine catchments. An effective connection of hillslopes with the channel network results in highly efficient sediment transfer processes, such as debris flows. In contrast, morphological conditions producing decoupling of hillslopes from channels (e.g. glacial cirques) may exclude large areas of the catchment from sediment delivery to its lower parts. Moreover, an efficient connection between hillslopes and channel network does not always ensure an effective downstream transfer of sediment. Low-slope channel reaches (e.g. in hanging valleys) cause sediment deposition, which often results in changes of the sediment transport processes, typically from debris flow to streamflow with low bedload and suspended load rates. The availability of high-resolution digital terrain models, such as those derived from aerial LiDAR, improves our capability to quantify the topographic controls on sediment connectivity. A geomorphometric index, based on the approach by Borselli et al. (2008), was developed and applied to assess spatial sediment connectivity in two small catchments of the Italian Alps featuring contrasting morphological characteristics. The results of the geomorphometric analysis were checked against field evidences, showing good performance and thus potential usefulness of the index.

Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments

Cavalli M;Marchi L
2013

Abstract

Complex and rugged topography induces large variations in erosion and sediment delivery in the headwaters of alpine catchments. An effective connection of hillslopes with the channel network results in highly efficient sediment transfer processes, such as debris flows. In contrast, morphological conditions producing decoupling of hillslopes from channels (e.g. glacial cirques) may exclude large areas of the catchment from sediment delivery to its lower parts. Moreover, an efficient connection between hillslopes and channel network does not always ensure an effective downstream transfer of sediment. Low-slope channel reaches (e.g. in hanging valleys) cause sediment deposition, which often results in changes of the sediment transport processes, typically from debris flow to streamflow with low bedload and suspended load rates. The availability of high-resolution digital terrain models, such as those derived from aerial LiDAR, improves our capability to quantify the topographic controls on sediment connectivity. A geomorphometric index, based on the approach by Borselli et al. (2008), was developed and applied to assess spatial sediment connectivity in two small catchments of the Italian Alps featuring contrasting morphological characteristics. The results of the geomorphometric analysis were checked against field evidences, showing good performance and thus potential usefulness of the index.
2013
Istituto di Ricerca per la Protezione Idrogeologica - IRPI
Debris flow
Geomorphometry
High-resolution DTM
LiDAR
Sediment connectivity
File in questo prodotto:
File Dimensione Formato  
prod_270116-doc_89134.pdf

solo utenti autorizzati

Descrizione: Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments
Dimensione 3.49 MB
Formato Adobe PDF
3.49 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/18298
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 650
  • ???jsp.display-item.citation.isi??? 594
social impact