Extracellular signal-regulated kinase 8 (ERK8) has been already implicated in cell transformation and in the protection of genomic integrity and, therefore, proposed as a novel potential therapeutic target for cancer. In the absence of a crystal structure, we developed a three-dimensional model for its kinase domain. To validate our model we applied a structure- based virtual screening protocol consisting of pharmacophore screening and molecular docking. Experimental characterization of the hit compounds confirmed that a high percentage of the identified scaffolds was able to inhibit ERK8. We also confirmed an ATP competitive mechanism of action for the two best-performing molecules. Ultimately, we identified an ERK8 drug-resistant ''gatekeeper'' mutant that corroborated the predicted molecular binding mode, confirming the reliability of the generated structure. We expect that our model will be a valuable tool for the development of specific ERK8 kinase inhibitors.

Structure prediction and validation of the ERK8 kinase domain

Colecchia D;Chiariello M
2013

Abstract

Extracellular signal-regulated kinase 8 (ERK8) has been already implicated in cell transformation and in the protection of genomic integrity and, therefore, proposed as a novel potential therapeutic target for cancer. In the absence of a crystal structure, we developed a three-dimensional model for its kinase domain. To validate our model we applied a structure- based virtual screening protocol consisting of pharmacophore screening and molecular docking. Experimental characterization of the hit compounds confirmed that a high percentage of the identified scaffolds was able to inhibit ERK8. We also confirmed an ATP competitive mechanism of action for the two best-performing molecules. Ultimately, we identified an ERK8 drug-resistant ''gatekeeper'' mutant that corroborated the predicted molecular binding mode, confirming the reliability of the generated structure. We expect that our model will be a valuable tool for the development of specific ERK8 kinase inhibitors.
2013
Istituto di Fisiologia Clinica - IFC
File in questo prodotto:
File Dimensione Formato  
prod_206083-doc_46258.pdf

accesso aperto

Descrizione: Strambi et al._PLOSONE_2013
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/183034
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact