Corrosion in metals is simulated with variations in plate thickness which are laterally infinite in a 1D model and are represented by milled flat-bottom holes in a 2D model. Temperature contrast over corroded areas is chosen as an informative parameter, quite independent of absorbed thermal energy in the infra-red thermographic test. It is shown that, due to lower sensitivity to rear-side effects at the beginning of the thermal process-and increasing 3D hear diffusion effects at the end of the process, there is an optimum time to detect corrosion. A robust inversion function is proposed and its stability against variations in tested material, heat pulse duration and observation time is analysed using numerical modelling. Corrosion in a steel specimen of 1.3 mm thickness is experimentally studied, having proved the validity of the inversion algorithm with an average accuracy of 17% for material loss ranging from 74 to 14%.

Surface transient temperature inversion for hidden corrosion characterisation: Theory and applications

E Grinzato;S Marinetti;
1996

Abstract

Corrosion in metals is simulated with variations in plate thickness which are laterally infinite in a 1D model and are represented by milled flat-bottom holes in a 2D model. Temperature contrast over corroded areas is chosen as an informative parameter, quite independent of absorbed thermal energy in the infra-red thermographic test. It is shown that, due to lower sensitivity to rear-side effects at the beginning of the thermal process-and increasing 3D hear diffusion effects at the end of the process, there is an optimum time to detect corrosion. A robust inversion function is proposed and its stability against variations in tested material, heat pulse duration and observation time is analysed using numerical modelling. Corrosion in a steel specimen of 1.3 mm thickness is experimentally studied, having proved the validity of the inversion algorithm with an average accuracy of 17% for material loss ranging from 74 to 14%.
1996
Istituto per le Tecnologie della Costruzione - ITC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/184241
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 61
social impact