In this study nanocrystalline cellulose (NCC) was used to improve the performance of polyvinyl acetate (PVA) as a wood adhesive. NCC was added to PVA at different loadings (1%, 2% and 3%) and the blends were used as binder for wood. Block shear tests were done to evaluate bonding strength of PVA at different conditions; dry and wet conditions, at the elevated temperature (100 °C). The mechanical properties of PVA film and its composites with NCC were measured by nanoindentation technique. Thermal stability and structure of nanocomposites were studied by thermogravimetric analysis and atomic force microscopy (AFM). The block shear tests demonstrate that NCC can improve bonding strength of PVA in all conditions. Hardness, modulus of elasticity (MOE) and creep of PVA film were also changed positively by the addition of NCC. Thermal stability of PVA was significantly improved as NCC was added to PVA. Structural studies revealed that variations in shear strength and other properties can be related to the quality of NCC dispersion in the PVA matrix.
Nanocrystalline cellulose (NCC): A renewable nano-material for polyvinyl acetate (PVA) adhesive
Fellin M;
2012
Abstract
In this study nanocrystalline cellulose (NCC) was used to improve the performance of polyvinyl acetate (PVA) as a wood adhesive. NCC was added to PVA at different loadings (1%, 2% and 3%) and the blends were used as binder for wood. Block shear tests were done to evaluate bonding strength of PVA at different conditions; dry and wet conditions, at the elevated temperature (100 °C). The mechanical properties of PVA film and its composites with NCC were measured by nanoindentation technique. Thermal stability and structure of nanocomposites were studied by thermogravimetric analysis and atomic force microscopy (AFM). The block shear tests demonstrate that NCC can improve bonding strength of PVA in all conditions. Hardness, modulus of elasticity (MOE) and creep of PVA film were also changed positively by the addition of NCC. Thermal stability of PVA was significantly improved as NCC was added to PVA. Structural studies revealed that variations in shear strength and other properties can be related to the quality of NCC dispersion in the PVA matrix.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.