Commercially available Sodium clay (Dellite HPS) and organo-clay (Dellite 72T) are modified via a silylation reaction. These silylated clays are characterized by IR, XRD, thermogravimetric analyses, and their equilibrium contact angles are measured. They are used to prepare nanocomposites at different loading percentage (1, 3, 5% wt) by in situ intercalative polymerization of Methyl methacrylate and morphology and thermal properties of nanocomposites are examined. SEM images of nanocomposites fractured surface show the absence of clays aggregates, confirming a good dispersion and distribution of montmorillonites in the polymer matrix. The effects of modified clays on the thermal properties of nanocomposites are analyzed by differential scanning calorimetry and thermogravimetric analyses showing an increase of glass and decomposition temperatures of all nanocomposites respect to homopolymer ones. The best results are obtained in the presence of silylated montmorillonites, clearly the organosilane improves the compatibility between polymer matrix and clay and as effect the properties of nanocomposites.

Synthesis and characterization of PMMA/silylated MMTs

Balboni R;
2011

Abstract

Commercially available Sodium clay (Dellite HPS) and organo-clay (Dellite 72T) are modified via a silylation reaction. These silylated clays are characterized by IR, XRD, thermogravimetric analyses, and their equilibrium contact angles are measured. They are used to prepare nanocomposites at different loading percentage (1, 3, 5% wt) by in situ intercalative polymerization of Methyl methacrylate and morphology and thermal properties of nanocomposites are examined. SEM images of nanocomposites fractured surface show the absence of clays aggregates, confirming a good dispersion and distribution of montmorillonites in the polymer matrix. The effects of modified clays on the thermal properties of nanocomposites are analyzed by differential scanning calorimetry and thermogravimetric analyses showing an increase of glass and decomposition temperatures of all nanocomposites respect to homopolymer ones. The best results are obtained in the presence of silylated montmorillonites, clearly the organosilane improves the compatibility between polymer matrix and clay and as effect the properties of nanocomposites.
2011
Organosilane
Silylation
Thermal stability
PMMA
MMT
Clay-polymer matrix nanocomposites
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/184860
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? ND
social impact