Colloidal particles have the right size to form ordered structures with periodicities comparable to the wavelength of visible light. The tantalizing colours of precious opals and the colour of some species of birds are examples of polycrystalline colloidal structures found in nature. Driven by the demands of several emergent technologies, efforts have been made to develop efficient, self-assembly-based methodologies for generating colloidal single crystals with well-defined morphologies. Somewhat unfortunately, these efforts are often frustrated by the formation of structures lacking long-range order. Here we show that the rational design of patch shape and symmetry can drive patchy colloids to crystallize in a single, selected morphology by structurally eliminating undesired polymorphs. We provide a proof of this concept through the numerical investigation of triblock Janus colloids. One particular choice of patch symmetry yields, via spontaneous crystallization, a pure tetrastack lattice, a structure with attractive photonic properties, whereas another one results in a colloidal clathrate-like structure, in both cases without any interfering polymorphs.

Patterning symmetry in the rational design of colloidal crystals

Francesco Sciortino
2012

Abstract

Colloidal particles have the right size to form ordered structures with periodicities comparable to the wavelength of visible light. The tantalizing colours of precious opals and the colour of some species of birds are examples of polycrystalline colloidal structures found in nature. Driven by the demands of several emergent technologies, efforts have been made to develop efficient, self-assembly-based methodologies for generating colloidal single crystals with well-defined morphologies. Somewhat unfortunately, these efforts are often frustrated by the formation of structures lacking long-range order. Here we show that the rational design of patch shape and symmetry can drive patchy colloids to crystallize in a single, selected morphology by structurally eliminating undesired polymorphs. We provide a proof of this concept through the numerical investigation of triblock Janus colloids. One particular choice of patch symmetry yields, via spontaneous crystallization, a pure tetrastack lattice, a structure with attractive photonic properties, whereas another one results in a colloidal clathrate-like structure, in both cases without any interfering polymorphs.
2012
Istituto dei Sistemi Complessi - ISC
BAND-GAP
NUCLEATION
File in questo prodotto:
File Dimensione Formato  
prod_199575-doc_43731.pdf

accesso aperto

Descrizione: Patterning symmetry in the rational
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 748.57 kB
Formato Adobe PDF
748.57 kB Adobe PDF Visualizza/Apri
prod_199575-doc_43732.pdf

accesso aperto

Descrizione: Supplementary information
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.77 MB
Formato Adobe PDF
2.77 MB Adobe PDF Visualizza/Apri
prod_199575-doc_43734.pdf

solo utenti autorizzati

Descrizione: Highlighted_in_Le_Scienze_(in_italian)
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.38 MB
Formato Adobe PDF
2.38 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_199575-doc_43733.pdf

solo utenti autorizzati

Descrizione: Highlighted_in_Nature Physics
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 299.21 kB
Formato Adobe PDF
299.21 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/18664
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 140
  • ???jsp.display-item.citation.isi??? 115
social impact