We study the Kern-Frenkel model for patchy colloids using Barker-Henderson second-order thermodynamic perturbation theory. The model describes a fluid where hard sphere particles are decorated with one patch, so that they interact via a square-well potential if they are sufficiently close one another, and if patches on each particle are properly aligned. Both the gas-liquid and fluid-solid phase coexistences are computed and contrasted against corresponding Monte Carlo simulations results. We find that the perturbation theory describes rather accurately numerical simulations all the way from a fully covered square-well potential down to the Janus limit (half coverage). In the region where numerical data are not available (from Janus to hard-spheres), the method provides estimates of the location of the critical lines that could serve as a guideline for further efficient numerical work at these low coverages. A comparison with other techniques, such as integral equation theory, highlights the important aspect of this methodology in the present context.

Fluid-fluid and fluid-solid transitions in the Kern-Frenkel model from Barker-Henderson thermodynamic perturbation theory

Francesco Sciortino;
2012

Abstract

We study the Kern-Frenkel model for patchy colloids using Barker-Henderson second-order thermodynamic perturbation theory. The model describes a fluid where hard sphere particles are decorated with one patch, so that they interact via a square-well potential if they are sufficiently close one another, and if patches on each particle are properly aligned. Both the gas-liquid and fluid-solid phase coexistences are computed and contrasted against corresponding Monte Carlo simulations results. We find that the perturbation theory describes rather accurately numerical simulations all the way from a fully covered square-well potential down to the Janus limit (half coverage). In the region where numerical data are not available (from Janus to hard-spheres), the method provides estimates of the location of the critical lines that could serve as a guideline for further efficient numerical work at these low coverages. A comparison with other techniques, such as integral equation theory, highlights the important aspect of this methodology in the present context.
2012
Istituto dei Sistemi Complessi - ISC
SQUARE-WELL FLUIDS
EQUATION-OF-STATE
INTEGRAL-EQUATION
SIMPLE LIQUIDS
EQUILIBRIUM STRUCTURE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/18677
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact