Excited states of ethylene-linked free-base porphyrin oligomers and polymer are studied using many-body perturbation theory (MBPT) within the GW approximation and the Bethe-Salpeter equation. Trends in the electronic levels with oligomer length are analysed and the correct long-range behaviour in the band gap is obtained. High polarizabilities and strong redshifts in the optical absorption peaks are predicted in agreement with observations on other strongly conjugated oligoporphyrins. We explain these trends by means of spatial and spectral analyses of the exciton character. Although Wannier-Mott and charge-transfer excitons are identified in the optical spectra, the strongest polarizabilities are actually associated with small, tightly bound excitons (Frenkel-like), in contrast to expectations. Furthermore, the common procedure of extrapolating polymer properties from oligomer calculations is examined from a MBPT perspective.
Correlation effects in the optical spectra of porphyrin oligomer chains: Exciton confinement and length dependence
Conor Hogan;
2013
Abstract
Excited states of ethylene-linked free-base porphyrin oligomers and polymer are studied using many-body perturbation theory (MBPT) within the GW approximation and the Bethe-Salpeter equation. Trends in the electronic levels with oligomer length are analysed and the correct long-range behaviour in the band gap is obtained. High polarizabilities and strong redshifts in the optical absorption peaks are predicted in agreement with observations on other strongly conjugated oligoporphyrins. We explain these trends by means of spatial and spectral analyses of the exciton character. Although Wannier-Mott and charge-transfer excitons are identified in the optical spectra, the strongest polarizabilities are actually associated with small, tightly bound excitons (Frenkel-like), in contrast to expectations. Furthermore, the common procedure of extrapolating polymer properties from oligomer calculations is examined from a MBPT perspective.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.