We report new results from our programme of molecular dynamics simulation of hard-sphere systems, focusing on crystallization and glass formation at high concentrations. First we consider a much larger system than hitherto, N = 86 400 equal-sized particles. The results are similar to those obtained with a smaller system, studied previously, showing conventional nucleation and growth of crystals at concentrations near melting and crossing over to a spinodal-like regime at higher concentrations where the free energy barrier to nucleation appears to be negligible. Second, we investigate the dependence on the initial state of the system. We have devised a Monte Carlo 'constrained aging' method to move the particles in such a way that crystallization is discouraged. After a period of such aging, the standard molecular dynamics programme is run. For a system of N = 3200, we find that constrained aging encourages caging of the particles and slows crystallization somewhat. Nevertheless, both aged and unaged systems crystallize at volume fraction phi = 0.61 whereas neither system shows full crystallization in the duration of the simulation at phi = 0.62, a concentration still significantly below that of random close packing.

Crystallization and aging in hard-sphere glasses

E. Zaccarelli;
2011

Abstract

We report new results from our programme of molecular dynamics simulation of hard-sphere systems, focusing on crystallization and glass formation at high concentrations. First we consider a much larger system than hitherto, N = 86 400 equal-sized particles. The results are similar to those obtained with a smaller system, studied previously, showing conventional nucleation and growth of crystals at concentrations near melting and crossing over to a spinodal-like regime at higher concentrations where the free energy barrier to nucleation appears to be negligible. Second, we investigate the dependence on the initial state of the system. We have devised a Monte Carlo 'constrained aging' method to move the particles in such a way that crystallization is discouraged. After a period of such aging, the standard molecular dynamics programme is run. For a system of N = 3200, we find that constrained aging encourages caging of the particles and slows crystallization somewhat. Nevertheless, both aged and unaged systems crystallize at volume fraction phi = 0.61 whereas neither system shows full crystallization in the duration of the simulation at phi = 0.62, a concentration still significantly below that of random close packing.
2011
Istituto dei Sistemi Complessi - ISC
CRYSTAL NUCLEATION
COLLOIDAL SPHERES
TRANSITION
SUSPENSIONS
SIMULATION
File in questo prodotto:
File Dimensione Formato  
prod_199647-doc_43765.pdf

solo utenti autorizzati

Descrizione: Crystallization and aging in hard-sphere glasses
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
prod_199647-doc_43766.pdf

solo utenti autorizzati

Descrizione: Corrigendum
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 468.38 kB
Formato Adobe PDF
468.38 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/18729
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 30
social impact