The optical ring-down time in a silica microsphere resonator is measured using phase-shift cavity ring-down spectroscopy. When detecting Rayleigh backscattered light that is coupled into the input waveguide it is found that the shift of the modulation phase angle, Delta phi, is approximately linearly dependent on the amplitude modulation frequency. The microresonator therefore behaves as if it was a delay line. A model involving two different time scales for the buildup of the Rayleigh backscattered light and the decay of the whispering gallery modes is used to explain the observations.
Phase-shift cavity ring-down spectroscopy on a microsphere resonator by Rayleigh backscattering
Gagliardi Gianluca;
2013
Abstract
The optical ring-down time in a silica microsphere resonator is measured using phase-shift cavity ring-down spectroscopy. When detecting Rayleigh backscattered light that is coupled into the input waveguide it is found that the shift of the modulation phase angle, Delta phi, is approximately linearly dependent on the amplitude modulation frequency. The microresonator therefore behaves as if it was a delay line. A model involving two different time scales for the buildup of the Rayleigh backscattered light and the decay of the whispering gallery modes is used to explain the observations.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


