Web Search Engines' result pages contain references to the top-k documents relevant for the query submitted by a user. Each document is represented by a title, a snippet and a URL. Snippets, i.e. short sentences showing the portions of the document being relevant to the query, help users to select the most interesting results. The snippet generation process is very expensive, since it may require to access a number of documents for each issued query. We assert that caching, a popular technique used to enhance performance at various levels of any computing systems, can be very e ective in this context. We design and experiment several cache organizations, and we introduce the concept of supersnippet, that is the set of sentences in a document that are more likely to answer future queries. We show that supersnippets can be built by exploiting query logs, and that in our experiments a supersnippet cache answers up to 62% of the requests, remarkably outperforming other caching approaches.

Caching query-biased snippets for efficient retrieval

Lucchese C;Perego R;
2011

Abstract

Web Search Engines' result pages contain references to the top-k documents relevant for the query submitted by a user. Each document is represented by a title, a snippet and a URL. Snippets, i.e. short sentences showing the portions of the document being relevant to the query, help users to select the most interesting results. The snippet generation process is very expensive, since it may require to access a number of documents for each issued query. We assert that caching, a popular technique used to enhance performance at various levels of any computing systems, can be very e ective in this context. We design and experiment several cache organizations, and we introduce the concept of supersnippet, that is the set of sentences in a document that are more likely to answer future queries. We show that supersnippets can be built by exploiting query logs, and that in our experiments a supersnippet cache answers up to 62% of the requests, remarkably outperforming other caching approaches.
2011
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-1-4503-0528-0
Information retrieval
File in questo prodotto:
File Dimensione Formato  
prod_199719-doc_43807.pdf

solo utenti autorizzati

Descrizione: Caching query-biased snippets for efficient retrieval
Tipologia: Versione Editoriale (PDF)
Dimensione 734.13 kB
Formato Adobe PDF
734.13 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/18796
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact