Several lines of evidence suggest that the I?B kinase (IKK)/nuclear factor-?B (NF?B) axis is required for viability of leukemic cells and is a predictor of relapse in T-cell acute lymphoblastic leukemia (T-ALL). Moreover, many anticancer agents induce NF?B nuclear translocation and activation of its target genes, which counteract cellular resistance to chemotherapeutic drugs. Therefore, the design and the study of IKK-specific drugs is crucial to inhibit tumor cell proliferation and to prevent cancer drug-resistance. Here, we report the anti-proliferative effects induced by BMS-345541 (a highly selective IKK inhibitor) in three Notch1-mutated T-ALL cell lines and in T-ALL primary cells from pediatric patients. BMS-345541 induced apoptosis and an accumulation of cells in the G 2/M phase of the cell cycle via inhibition of IKK/NF?B signaling. We also report that T-ALL cells treated with BMS-345541 displayed nuclear translocation of FOXO3a and restoration of its functions, including control of p21(Cip1) expression levels. We demonstrated that FOXO3a subcellular re-distribution is independent of AKT and ERK 1/2 signaling, speculating that in T-ALL the loss of FOXO3a tumor suppressor function could be due to deregulation of IKK, as has been previously demonstrated in other cancer types. It is well known that, differently from p53, FOXO3a mutations have not yet been found in human tumors, which makes therapeutics activating FOXO3a more appealing than others. For these features, BMS-345541 could be used alone or in combination with traditional therapies in the treatment of T-ALL.

Activity of the selective I?B kinase inhibitor BMS-345541 against T-cell acute lymphoblastic leukemia: involvement of FOXO3a.

Chiarini F;Martelli AM
2012

Abstract

Several lines of evidence suggest that the I?B kinase (IKK)/nuclear factor-?B (NF?B) axis is required for viability of leukemic cells and is a predictor of relapse in T-cell acute lymphoblastic leukemia (T-ALL). Moreover, many anticancer agents induce NF?B nuclear translocation and activation of its target genes, which counteract cellular resistance to chemotherapeutic drugs. Therefore, the design and the study of IKK-specific drugs is crucial to inhibit tumor cell proliferation and to prevent cancer drug-resistance. Here, we report the anti-proliferative effects induced by BMS-345541 (a highly selective IKK inhibitor) in three Notch1-mutated T-ALL cell lines and in T-ALL primary cells from pediatric patients. BMS-345541 induced apoptosis and an accumulation of cells in the G 2/M phase of the cell cycle via inhibition of IKK/NF?B signaling. We also report that T-ALL cells treated with BMS-345541 displayed nuclear translocation of FOXO3a and restoration of its functions, including control of p21(Cip1) expression levels. We demonstrated that FOXO3a subcellular re-distribution is independent of AKT and ERK 1/2 signaling, speculating that in T-ALL the loss of FOXO3a tumor suppressor function could be due to deregulation of IKK, as has been previously demonstrated in other cancer types. It is well known that, differently from p53, FOXO3a mutations have not yet been found in human tumors, which makes therapeutics activating FOXO3a more appealing than others. For these features, BMS-345541 could be used alone or in combination with traditional therapies in the treatment of T-ALL.
2012
Istituto di Genetica Molecolare "Luigi Luca Cavalli Sforza"
T-cell acute lymphoblastic leukemia
BMS-345541
IKK
NF?B
FOXO3a
cell cycle
apoptosis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/18798
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact