The ability of the auditory system to perceive the fundamental frequency of a sound even when this frequency is removed from the stimulus is an interesting phenomenon related to the pitch of complex sounds. This capability is known as residue or virtual pitch perception and was first reported last century in the pioneering work of Seebeck. It is residue perception that allows one to listen to music with small transistor radios, which in general have a very poor and sometimes negligible response to low frequencies. The first attempt, due to von Helmholtz, to explain the residue as a nonlinear effect in the ear considered it to originate from difference combination tones. But later experiments showed that the residue does not coincide with a difference combination tone, and nonlinear theories were abandoned. However, in this paper we use recent results from the theory of nonlinear dynamical systems to show that physical frequencies produced by generic nonlinear oscillators acted upon by two independent periodic excitations can reproduce with great precision most of the experimental data about the residue.

A new nonlinear model for pitch perception

Gonzalez Diego L;
1999

Abstract

The ability of the auditory system to perceive the fundamental frequency of a sound even when this frequency is removed from the stimulus is an interesting phenomenon related to the pitch of complex sounds. This capability is known as residue or virtual pitch perception and was first reported last century in the pioneering work of Seebeck. It is residue perception that allows one to listen to music with small transistor radios, which in general have a very poor and sometimes negligible response to low frequencies. The first attempt, due to von Helmholtz, to explain the residue as a nonlinear effect in the ear considered it to originate from difference combination tones. But later experiments showed that the residue does not coincide with a difference combination tone, and nonlinear theories were abandoned. However, in this paper we use recent results from the theory of nonlinear dynamical systems to show that physical frequencies produced by generic nonlinear oscillators acted upon by two independent periodic excitations can reproduce with great precision most of the experimental data about the residue.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/188763
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact