Neisseria meningitidis type A (MenA) is a Gram-negative encapsulated bacterium that may cause explosive epidemics of meningitis, especially in the sub-Saharan region of Africa. The development and manufacture of an efficient glycoconjugate vaccine against Neisseria meningitidisA is greatly hampered by the poor hydrolytic stability of its capsular polysaccharide, which is made up of (1!6)-linked 2-acetamido-2-deoxy-a-d-mannopyranosyl phosphate repeating units. Since this chemical lability is a product of the inherent instability of the phosphodiester bridges, here we report the synthesis of phosphonoester-linked oligomers of N-acetyl mannosamine as candidates for stabilised analogues of the corresponding phosphate-bridged saccharides. The installation of each interglycosidic phosphonoester linkage was achieved by Mitsunobu coupling of a glycosyl C-phosphonate building block with the 6-OH moiety of a mannosaminyl residue. Each of the synthesised compounds contains an O-linked aminopropyl spacer at its reducing end (a- or b-oriented) to allow for protein conjugation. The relative affinities of the synthetic molecules were investigated by a competitive ELISA assay and showed that a human polyclonal anti-MenA serum can recognise both the phosphonoester-bridged fragments 1-3 and their monomeric subunits, glycosides 20 and 21. Moreover, the biological results suggest that the abilities of these compounds to inhibit the binding of a specific antibody to MenA polysaccharide are dependent on the chain lengths of the molecules, but independent on the orientations of the anomeric linkers.
Synthesis and Biological Evaluation of Phosphono Analogues of Capsular Polysaccharide Fragments from Neisseria meningitidis A
Laura Polito;
2007
Abstract
Neisseria meningitidis type A (MenA) is a Gram-negative encapsulated bacterium that may cause explosive epidemics of meningitis, especially in the sub-Saharan region of Africa. The development and manufacture of an efficient glycoconjugate vaccine against Neisseria meningitidisA is greatly hampered by the poor hydrolytic stability of its capsular polysaccharide, which is made up of (1!6)-linked 2-acetamido-2-deoxy-a-d-mannopyranosyl phosphate repeating units. Since this chemical lability is a product of the inherent instability of the phosphodiester bridges, here we report the synthesis of phosphonoester-linked oligomers of N-acetyl mannosamine as candidates for stabilised analogues of the corresponding phosphate-bridged saccharides. The installation of each interglycosidic phosphonoester linkage was achieved by Mitsunobu coupling of a glycosyl C-phosphonate building block with the 6-OH moiety of a mannosaminyl residue. Each of the synthesised compounds contains an O-linked aminopropyl spacer at its reducing end (a- or b-oriented) to allow for protein conjugation. The relative affinities of the synthetic molecules were investigated by a competitive ELISA assay and showed that a human polyclonal anti-MenA serum can recognise both the phosphonoester-bridged fragments 1-3 and their monomeric subunits, glycosides 20 and 21. Moreover, the biological results suggest that the abilities of these compounds to inhibit the binding of a specific antibody to MenA polysaccharide are dependent on the chain lengths of the molecules, but independent on the orientations of the anomeric linkers.File | Dimensione | Formato | |
---|---|---|---|
prod_182502-doc_24585.pdf
solo utenti autorizzati
Descrizione: Synthesis and Biological Evaluation of Phosphono Analogues of Capsular Polysaccharide Fragments from Neisseria meningitidis A
Dimensione
249.87 kB
Formato
Adobe PDF
|
249.87 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.