We are concerned with the discretization of optimal control problems when a Runge-Kutta scheme is selected for the related Hamiltonian system. It is known that Lagrangian's first order conditions on the discrete model, require a symplectic partitioned Runge-Kutta scheme for state-costate equations. In the present paper this result is extended to growth models, widely used in Economics studies, where the system is described by a current Hamiltonian.

Exponential Lawson integration for nearly Hamiltonian systems arising in optimal control

F Diele;C Marangi;
2008

Abstract

We are concerned with the discretization of optimal control problems when a Runge-Kutta scheme is selected for the related Hamiltonian system. It is known that Lagrangian's first order conditions on the discrete model, require a symplectic partitioned Runge-Kutta scheme for state-costate equations. In the present paper this result is extended to growth models, widely used in Economics studies, where the system is described by a current Hamiltonian.
2008
Istituto Applicazioni del Calcolo ''Mauro Picone''
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/189609
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact