We investigate the origin of diffusion in non-chaotic systems. As an example, we consider 1D map models whose slope is everywhere 1 (therefore the Lyapunov exponent is zero) but with random quenched discontinuities and quasi-periodic forcing. The models are constructed as non-chaotic approximations of chaotic maps showing deterministic diffusion, and represent one-dimensional versions of a Lorentz gas with polygonal obstacles (e.g., the Ehrenfest wind-tree model). In particular, a simple construction shows that these maps define non-chaotic billiards in space-time. The models exhibit, in a wide range of the parameters, the same diffusive behavior of the corresponding chaotic versions. We present evidence of two sufficient ingredients for diffusive behavior in one-dimensional, non-chaotic systems: (i) a finite size, algebraic instability mechanism; (ii) a mechanism that suppresses periodic orbits

The origin of diffusion: the case of non-chaotic systems

F Cecconi;
2003

Abstract

We investigate the origin of diffusion in non-chaotic systems. As an example, we consider 1D map models whose slope is everywhere 1 (therefore the Lyapunov exponent is zero) but with random quenched discontinuities and quasi-periodic forcing. The models are constructed as non-chaotic approximations of chaotic maps showing deterministic diffusion, and represent one-dimensional versions of a Lorentz gas with polygonal obstacles (e.g., the Ehrenfest wind-tree model). In particular, a simple construction shows that these maps define non-chaotic billiards in space-time. The models exhibit, in a wide range of the parameters, the same diffusive behavior of the corresponding chaotic versions. We present evidence of two sufficient ingredients for diffusive behavior in one-dimensional, non-chaotic systems: (i) a finite size, algebraic instability mechanism; (ii) a mechanism that suppresses periodic orbits
2003
MICROSCOPIC CHAOS; STATISTICAL-MECHANICS; TRANSPORT-PROPERTIES; KOLMOGOROV-ENTROPY; PERIODIC-ORBITS; RANDOM-WALKS; UNIT TIME; NOISE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/189663
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 36
social impact