We study the electroencephalogram (EEG) of 30 closed-eye awake subjects with a technique of analysis recently proposed to detect punctual events signaling rapid transitions between different metastable states. After single-EEG-channel event detection, we study global properties of events simultaneously occurring among two or more electrodes termed coincidences. We convert the coincidences into a diffusion process with three distinct rules that can yield the same \mu only in the case where the coincidences are driven by a renewal process. We establish that the time interval between two consecutive renewal events driving the coincidences has a waiting-time distribution with inverse power-law index \mu about 2 corresponding to ideal 1 / f noise. We argue that this discovery, shared by all subjects of our study, supports the conviction that 1 / f noise is an optimal communication channel for complex networks as in art or language and may therefore be the channel through which the brain influences complex processes and is influenced by them.

Spontaneous brain activity as a source of ideal 1/f noise

Paolo Paradisi
2009

Abstract

We study the electroencephalogram (EEG) of 30 closed-eye awake subjects with a technique of analysis recently proposed to detect punctual events signaling rapid transitions between different metastable states. After single-EEG-channel event detection, we study global properties of events simultaneously occurring among two or more electrodes termed coincidences. We convert the coincidences into a diffusion process with three distinct rules that can yield the same \mu only in the case where the coincidences are driven by a renewal process. We establish that the time interval between two consecutive renewal events driving the coincidences has a waiting-time distribution with inverse power-law index \mu about 2 corresponding to ideal 1 / f noise. We argue that this discovery, shared by all subjects of our study, supports the conviction that 1 / f noise is an optimal communication channel for complex networks as in art or language and may therefore be the channel through which the brain influences complex processes and is influenced by them.
2009
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
87.85.dm Physical models of neurophysiological processes
89.75.Da Systems obeying scaling laws
87.19.le EEG and MEG
File in questo prodotto:
File Dimensione Formato  
prod_182509-doc_24623.pdf

accesso aperto

Descrizione: Spontaneous brain activity as a source of ideal 1/f noise
Tipologia: Versione Editoriale (PDF)
Dimensione 389.74 kB
Formato Adobe PDF
389.74 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/1900
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 106
  • ???jsp.display-item.citation.isi??? 97
social impact