In this paper, an introduction to the main steps required to develop conformal predictors based on fuzzy logic classifiers is provided. The more delicate aspect is the definition of an appropriate nonconformity score, which has to be based on the membership function to preserve the specificities of Fuzzy Logic. Various examples are introduced, to describe the main properties of fuzzy logic based conformal predictors and to compare their performance with alternative approaches. The obtained results are quite promising, since conformal predictors based on fuzzy classifiers show the potential to outperform solutions based on the nearest neighbour in terms of ambiguity, robustness and interpretability.

Introduction to Conformal Predictors Based on Fuzzy Logic Classifiers

A Murari;
2012

Abstract

In this paper, an introduction to the main steps required to develop conformal predictors based on fuzzy logic classifiers is provided. The more delicate aspect is the definition of an appropriate nonconformity score, which has to be based on the membership function to preserve the specificities of Fuzzy Logic. Various examples are introduced, to describe the main properties of fuzzy logic based conformal predictors and to compare their performance with alternative approaches. The obtained results are quite promising, since conformal predictors based on fuzzy classifiers show the potential to outperform solutions based on the nearest neighbour in terms of ambiguity, robustness and interpretability.
2012
Istituto gas ionizzati - IGI - Sede Padova
978-3-642-33411-5
Fuzzy Logic
Membership Function
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/19017
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact