The behaviour of the system formed by VIVO2+ ion with all-cis-2,4,6-trimethoxycyclohexane-1,3,5-triamine (tmca) was characterized in aqueous solution through the combined application of electron paramagnetic resonance (EPR) and UV-Vis spectroscopy, electrospray ionization mass spectrometry (ESI-MS), pH-potentiometry and DFT methods. The formation of an unusual non-oxido [V(tmcaH-2)2] species with VN6 coordination, with the ligand in the bianionic form, was demonstrated. The geometry, EPR and UV-Vis spectra and electronic structure of [V(tmcaH-2)2] were simulated with Gaussian 09 and ORCA software and the results were compared with those of similar oxido and non-oxido vanadium(IV) species formed by other polyamine and polyol related ligands, such as 1,3,5-triamino-1,3,5-trideoxy-cis-inositol (taci), 1,3,5-trideoxy-1,3,5-tris(dimethylamino)-cis-inositol (tdci), cis-inositol (ino) and 1,3,5-trideoxy-1,3,5-trimethoxy-cis-inositol (tmci). The results indicate that VIVO2+ species are formed in acid and weakly basic solution and that [V(tmcaH-2)2] is observed above pH 10. In the non-oxido complex, DFT calculations suggest that the two -NH2 groups are in trans position and that the pre-organization of the ligands favours the metal complexation and the formation of the hexa-coordinated species with VN6 coordination.
Formation in aqueous solution of non-oxido V(IV) complex with VN6 coordination. Potentiometric, ESI-MS, spectroscopic and computational characterization.
D Sanna;
2013
Abstract
The behaviour of the system formed by VIVO2+ ion with all-cis-2,4,6-trimethoxycyclohexane-1,3,5-triamine (tmca) was characterized in aqueous solution through the combined application of electron paramagnetic resonance (EPR) and UV-Vis spectroscopy, electrospray ionization mass spectrometry (ESI-MS), pH-potentiometry and DFT methods. The formation of an unusual non-oxido [V(tmcaH-2)2] species with VN6 coordination, with the ligand in the bianionic form, was demonstrated. The geometry, EPR and UV-Vis spectra and electronic structure of [V(tmcaH-2)2] were simulated with Gaussian 09 and ORCA software and the results were compared with those of similar oxido and non-oxido vanadium(IV) species formed by other polyamine and polyol related ligands, such as 1,3,5-triamino-1,3,5-trideoxy-cis-inositol (taci), 1,3,5-trideoxy-1,3,5-tris(dimethylamino)-cis-inositol (tdci), cis-inositol (ino) and 1,3,5-trideoxy-1,3,5-trimethoxy-cis-inositol (tmci). The results indicate that VIVO2+ species are formed in acid and weakly basic solution and that [V(tmcaH-2)2] is observed above pH 10. In the non-oxido complex, DFT calculations suggest that the two -NH2 groups are in trans position and that the pre-organization of the ligands favours the metal complexation and the formation of the hexa-coordinated species with VN6 coordination.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


