This paper proposes a fast method to estimate the Gibbs hyperparameters of an MRF image model with explicit lines during the restoration process. It consists of a mixed-annealing algorithm for the maximization of the posterior distribution with respect to the image field, periodically interrupted to compute, via ML estimation, a new set of parameters. We first consider the weak membrane model and show that, by adopting a saddle point approximation for the partition function, these new parameters are defined as those that maximize the conditional prior distribution of the lines given the intensities, evaluated on the current estimate of the whole image field. In this way the computation of the expectations involved in the ML estimation can be performed by analytical summation over the binary line elements alone, with a strong reduction of the computational complexity. The approach can be extended to the general case of self-interacting line models, by substituting the analytical computations with a binary, short-range Gibbs sampler.

Unsupervised edge-preserving image restoration via a saddle point approximation

Tonazzini A;Minutoli S
1999

Abstract

This paper proposes a fast method to estimate the Gibbs hyperparameters of an MRF image model with explicit lines during the restoration process. It consists of a mixed-annealing algorithm for the maximization of the posterior distribution with respect to the image field, periodically interrupted to compute, via ML estimation, a new set of parameters. We first consider the weak membrane model and show that, by adopting a saddle point approximation for the partition function, these new parameters are defined as those that maximize the conditional prior distribution of the lines given the intensities, evaluated on the current estimate of the whole image field. In this way the computation of the expectations involved in the ML estimation can be performed by analytical summation over the binary line elements alone, with a strong reduction of the computational complexity. The approach can be extended to the general case of self-interacting line models, by substituting the analytical computations with a binary, short-range Gibbs sampler.
1999
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Edge-preserving regularization
Gibbs parameter estimation
Unsupervised image restoration
Image processing and computer vision
File in questo prodotto:
File Dimensione Formato  
prod_255998-doc_142714.pdf

solo utenti autorizzati

Descrizione: Unsupervised edge-preserving image restoration via a saddle point approximation
Tipologia: Versione Editoriale (PDF)
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/193295
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact