We present a short account of the present experimental situation of stripes in cuprates followed by a review of our present understanding of their ground state and excited state properties. Collective modes, the dynamical structure factor, and the optical conductivity of stripes are computed using the time-dependent Gutzwiller approximation applied to realistic one band and three band Hubbard models, and are found to be in excellent agreement with experiment. On the other hand, experiments like angle-resolved photoemission and scanning tunneling microscopy show the coexistence of stripes at high energies with Fermi liquid quasiparticles at low energies. We show that a phenomenological model going beyond mean-field can reconcile this dynamic dichotomy.
Stripes in cuprate superconductors: Excitations and dynamic dichotomy
Grilli, M.;Lorenzana, Jose'
2012
Abstract
We present a short account of the present experimental situation of stripes in cuprates followed by a review of our present understanding of their ground state and excited state properties. Collective modes, the dynamical structure factor, and the optical conductivity of stripes are computed using the time-dependent Gutzwiller approximation applied to realistic one band and three band Hubbard models, and are found to be in excellent agreement with experiment. On the other hand, experiments like angle-resolved photoemission and scanning tunneling microscopy show the coexistence of stripes at high energies with Fermi liquid quasiparticles at low energies. We show that a phenomenological model going beyond mean-field can reconcile this dynamic dichotomy.File | Dimensione | Formato | |
---|---|---|---|
prod_198574-doc_43403.pdf
solo utenti autorizzati
Descrizione: Stripes in cuprate superconductors ...
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
979.3 kB
Formato
Adobe PDF
|
979.3 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.