We report on InAlN/GaN high electron mobility transistors (HEMTs) grown by metal organic vapor phase epitaxy on sapphire with ultrathin buffers. Two dimensional electron gas (2DEG) exhibiting high mobility (1100 cm2/V s) and low sheet resistivity (356X/w) is achieved at room temperature for a buffer thickness as low as 0.1 lm. It is shown that despite a huge dislocation density imposed by this thin buffer, surface roughness is the main factor which affects the transport properties. In addition, sapphire surface nitridation is found to drastically affect the properties of the InAlN/GaN 2DEG. Eventually, HEMTs are processed from these heterostructures. Maximum current densities of 0.35 A/mm and current on-off ratios higher than 109 are measured, which make them suitable for high performance GaN based sensing in harsh environments.
Ultrathin InAlN/GaN heterostructures on sapphire for high on/off current ratio high electron mobility transistors
Francesca Rossi;Giancarlo Salviati;
2013
Abstract
We report on InAlN/GaN high electron mobility transistors (HEMTs) grown by metal organic vapor phase epitaxy on sapphire with ultrathin buffers. Two dimensional electron gas (2DEG) exhibiting high mobility (1100 cm2/V s) and low sheet resistivity (356X/w) is achieved at room temperature for a buffer thickness as low as 0.1 lm. It is shown that despite a huge dislocation density imposed by this thin buffer, surface roughness is the main factor which affects the transport properties. In addition, sapphire surface nitridation is found to drastically affect the properties of the InAlN/GaN 2DEG. Eventually, HEMTs are processed from these heterostructures. Maximum current densities of 0.35 A/mm and current on-off ratios higher than 109 are measured, which make them suitable for high performance GaN based sensing in harsh environments.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.