We present a way of exploiting domain knowledge in the design and implementation of data mining algorithms, with special attention to frequent patterns discovery, within a deductive framework. In our framework domain knowledge is represented by deductive rules, and data mining algorithms are constructed by means of iterative user-defined aggregates. Iterative user-defined aggregates have a fixed scheme that allows the modularization of data mining algorithms, thus providing a way to exploit domain knowledge in the right point. As a case study, the paper presents user-defined aggregates for specifying a version of the apriori algorithm. Some performance analyses and comparisons are discussed in order to show the effectiveness of the approach.

Specifying Mining Algorithms with Iterative User-Defined Aggregates: A Case Study

Giuseppe Manco;
2001

Abstract

We present a way of exploiting domain knowledge in the design and implementation of data mining algorithms, with special attention to frequent patterns discovery, within a deductive framework. In our framework domain knowledge is represented by deductive rules, and data mining algorithms are constructed by means of iterative user-defined aggregates. Iterative user-defined aggregates have a fixed scheme that allows the modularization of data mining algorithms, thus providing a way to exploit domain knowledge in the right point. As a case study, the paper presents user-defined aggregates for specifying a version of the apriori algorithm. Some performance analyses and comparisons are discussed in order to show the effectiveness of the approach.
2001
3-540-42534-9
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/196914
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact