The paper shows how a logic-based database language can support the various steps of the KDD process by providing a high degree of expressiveness, and the separation of concerns between the specification level and the mapping to the underlying databases and data mining tools. In particular, the mechanism of user-defined aggregates provided in LDL++ allows to specify data mining tasks and to formalize the mining results in a uniform way. We show how the mechanism applies to the concept of Inductive Databases, proposed in [2,12]. We concentrate on bayesian classification and show how user defined aggregates allow to specify the mining evaluation functions and the returned patterns. The resulting formalism provides a flexible way to customize, tune and reason on both the evaluation functions and the extracted knowledge.
Making knowledge extraction and reasoning closer
Giannotti F;Manco G
2000
Abstract
The paper shows how a logic-based database language can support the various steps of the KDD process by providing a high degree of expressiveness, and the separation of concerns between the specification level and the mapping to the underlying databases and data mining tools. In particular, the mechanism of user-defined aggregates provided in LDL++ allows to specify data mining tasks and to formalize the mining results in a uniform way. We show how the mechanism applies to the concept of Inductive Databases, proposed in [2,12]. We concentrate on bayesian classification and show how user defined aggregates allow to specify the mining evaluation functions and the returned patterns. The resulting formalism provides a flexible way to customize, tune and reason on both the evaluation functions and the extracted knowledge.File | Dimensione | Formato | |
---|---|---|---|
prod_254621-doc_142338.pdf
solo utenti autorizzati
Descrizione: Making knowledge extraction and reasoning closer
Tipologia:
Versione Editoriale (PDF)
Dimensione
647.88 kB
Formato
Adobe PDF
|
647.88 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.