Pendant les vingt dernières années, la télédétection par laser aéroporté (LIDAR) est devenue une technologie de télédétection répandue dans de nombreuses applications environnementales, telles que la caractérisation de la végétation et le répertoire du combustible. Dans ce domaine, la technologie aéroportée LIDAR peut être une alternative efficace pour résoudre les problèmes des approches conventionnelles basées sur le sol de répertoire d'une petite zone de forêt: coûts élevés, méthodologies chronovores, exactitude limitée lorsque les données au sol sont étendues au niveau du paysage. Plusieurs recherches ont traité de l'utilisation de l'approche aéroportée LIDAR pour estimer et cartographier un certain nombre de paramètres de végétation, utilisés dans les applications de modélisation de l'expansion et du comportement de l'incendie: type de combustible, couverture de la canopée, densité apparente du feu de cime, etc. Cependant, l'exactitude et les capacités de l'ancienne approche dépendent des facteurs concernant la réflexion de l'impulsion du laser aussi bien par la végétation que par le sol, c'est-à-dire le couvert végétal et les espèces. Une méthode permettant de résoudre ce problème peut être l'application du scanner laser terrestre en vue de la fusion des données obtenues des deux différentes approches. L'objectif de cette recherche est d'évaluer les capacités des scanners lasers aéroportés et terrestres dans la prévision de la végétation et des caractéristiques du combustible des conifères et des forêts à larges feuilles d'une zone montagneuse au centre-est de la Sardaigne. L'analyse des données montre des précisions similaires entre les deux approches avec les forêts de conifères; au contraire, le scanner laser terrestre donne de meilleurs résultats dans les forêts à larges feuilles où l'on a obtenu des estimations précises de charge de combustible vivant et mort; l'intégration des deux ensembles de données a amélioré les densités apparentes des feux de cimes.

In the last twenty years the airborne Light Detection and Ranging (LIDAR) has became a widespread remote sensing technology in several environmental applications, such as the vegetation characterization and the fuel inventory. In this field, airborne LIDAR technology can be an effective alternative to overcome the difficulties of the conventional ground based small area forest inventory approaches: high costs, time consuming methodologies, limited accuracy when the ground data were extended to landscape level. Several works reported the use of the airborne LIDAR approach in order to estimate and map several parameters of vegetation used in fire spread and behaviour modelling applications: fuel type, plant height, canopy cover, crown bulk density, etc. However, the accuracy and the capabilities of the former approach depend on the factors affecting the laser pulse reflection from both the vegetation and the soil, i.e. the plant cover and species. A method to overcome this problem may be the application of the terrestrial laser scanner in order to merge the data coming from the two different approaches. The aim of this work is to assess the capabilities of the airborne and terrestrial laser scanners in predicting vegetation and fuel characteristics of coniferous and broadleaf forests of a mountain area of central-eastern Sardinia. The analysis of data demonstrate similar accuracies between the two approaches with conifers forests; on the contrary, the terrestrial laser scanner provided better results in broadleaf forests, where accurate estimations of the live and dead fuel load were obtained; the integration of the two sets of data provided improved estimates of the crown bulk densities.

Evaluation of airborne and terrestrial laser scanning in Mediterranean forest fuel type characterization

Arca B;Ventura A;Ferrara R;Pellizzaro G;Arca A;Masia P;Duce P;
2011

Abstract

In the last twenty years the airborne Light Detection and Ranging (LIDAR) has became a widespread remote sensing technology in several environmental applications, such as the vegetation characterization and the fuel inventory. In this field, airborne LIDAR technology can be an effective alternative to overcome the difficulties of the conventional ground based small area forest inventory approaches: high costs, time consuming methodologies, limited accuracy when the ground data were extended to landscape level. Several works reported the use of the airborne LIDAR approach in order to estimate and map several parameters of vegetation used in fire spread and behaviour modelling applications: fuel type, plant height, canopy cover, crown bulk density, etc. However, the accuracy and the capabilities of the former approach depend on the factors affecting the laser pulse reflection from both the vegetation and the soil, i.e. the plant cover and species. A method to overcome this problem may be the application of the terrestrial laser scanner in order to merge the data coming from the two different approaches. The aim of this work is to assess the capabilities of the airborne and terrestrial laser scanners in predicting vegetation and fuel characteristics of coniferous and broadleaf forests of a mountain area of central-eastern Sardinia. The analysis of data demonstrate similar accuracies between the two approaches with conifers forests; on the contrary, the terrestrial laser scanner provided better results in broadleaf forests, where accurate estimations of the live and dead fuel load were obtained; the integration of the two sets of data provided improved estimates of the crown bulk densities.
2011
Istituto di Biometeorologia - IBIMET - Sede Firenze
978-88-6025-190-9
Pendant les vingt dernières années, la télédétection par laser aéroporté (LIDAR) est devenue une technologie de télédétection répandue dans de nombreuses applications environnementales, telles que la caractérisation de la végétation et le répertoire du combustible. Dans ce domaine, la technologie aéroportée LIDAR peut être une alternative efficace pour résoudre les problèmes des approches conventionnelles basées sur le sol de répertoire d'une petite zone de forêt: coûts élevés, méthodologies chronovores, exactitude limitée lorsque les données au sol sont étendues au niveau du paysage. Plusieurs recherches ont traité de l'utilisation de l'approche aéroportée LIDAR pour estimer et cartographier un certain nombre de paramètres de végétation, utilisés dans les applications de modélisation de l'expansion et du comportement de l'incendie: type de combustible, couverture de la canopée, densité apparente du feu de cime, etc. Cependant, l'exactitude et les capacités de l'ancienne approche dépendent des facteurs concernant la réflexion de l'impulsion du laser aussi bien par la végétation que par le sol, c'est-à-dire le couvert végétal et les espèces. Une méthode permettant de résoudre ce problème peut être l'application du scanner laser terrestre en vue de la fusion des données obtenues des deux différentes approches. L'objectif de cette recherche est d'évaluer les capacités des scanners lasers aéroportés et terrestres dans la prévision de la végétation et des caractéristiques du combustible des conifères et des forêts à larges feuilles d'une zone montagneuse au centre-est de la Sardaigne. L'analyse des données montre des précisions similaires entre les deux approches avec les forêts de conifères; au contraire, le scanner laser terrestre donne de meilleurs résultats dans les forêts à larges feuilles où l'on a obtenu des estimations précises de charge de combustible vivant et mort; l'intégration des deux ensembles de données a amélioré les densités apparentes des feux de cimes.
forest inventory
fuel load
wildfire
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/19742
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact