Approximate dynamic programming (ADP) relies, in the continuous-state case, on both a flexible class of models for the approximation of the value functions and a smart sampling of the state space for the numerical solution of the recursive Bellman equations. In this paper, low-discrepancy sequences, commonly employed for number-theoretic methods, are investigated as a sampling scheme in the ADP context when local models, such as the Nadaraya-Watson (NW) ones, are employed for the approximation of the value function. The analysis is carried out both from a theoretical and a practical point of view. In particular, it is shown that the combined use of low-discrepancy sequences and NW models enables the convergence of the ADP procedure. Then, the regular structure of the low-discrepancy sampling is exploited to derive a method for automatic selection of the bandwidth of NW models, which yields a significant saving in the computational effort with respect to the standard cross validation approach. Simulation results concerning an inventory management problem are presented to show the effectiveness of the proposed techniques.

Low-discrepancy sampling for approximate dynamic programming with local approximators

-
2014

Abstract

Approximate dynamic programming (ADP) relies, in the continuous-state case, on both a flexible class of models for the approximation of the value functions and a smart sampling of the state space for the numerical solution of the recursive Bellman equations. In this paper, low-discrepancy sequences, commonly employed for number-theoretic methods, are investigated as a sampling scheme in the ADP context when local models, such as the Nadaraya-Watson (NW) ones, are employed for the approximation of the value function. The analysis is carried out both from a theoretical and a practical point of view. In particular, it is shown that the combined use of low-discrepancy sequences and NW models enables the convergence of the ADP procedure. Then, the regular structure of the low-discrepancy sampling is exploited to derive a method for automatic selection of the bandwidth of NW models, which yields a significant saving in the computational effort with respect to the standard cross validation approach. Simulation results concerning an inventory management problem are presented to show the effectiveness of the proposed techniques.
2014
Istituto di Studi sui Sistemi Intelligenti per l'Automazione - ISSIA - Sede Bari
Approximate dynamic programming
low-discrepancy sampling
local approximations
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/198012
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact