Despite the well-known crucial role of intradomain disulfide bridges for immunoglobulin folding and stability, the single-chain variable fragment of the anti-viral antibody F8 is functionally expressed when targeted to the reducing environment of the plant cytoplasm. We show here that this antibody fragment is also functionally expressed in the cytoplasm of Escherichia coli. A gel shift assay revealed that the single-chain variable fragment (scFv) accumulating in the plant and bacterial cytoplasm bears free sulfhydryl groups. Guanidinium chloride denaturation/renaturation studies indicated that refolding occurs even in a reducing environment, producing a functional molecule with the same spectral properties of the native scFv(Fs). Taken together, these results suggest that folding and functionality of this antibody fragment are not prevented in a reducing environment. This antibody fragment could therefore represent a suitable framework for engineering recombinant antibodies to be targeted to the cytoplasm.

A single-chain antibody fragment is functionally expressed in the cytoplasm of both Escherichia coli and transgenic plants

Morea V;
1999-01-01

Abstract

Despite the well-known crucial role of intradomain disulfide bridges for immunoglobulin folding and stability, the single-chain variable fragment of the anti-viral antibody F8 is functionally expressed when targeted to the reducing environment of the plant cytoplasm. We show here that this antibody fragment is also functionally expressed in the cytoplasm of Escherichia coli. A gel shift assay revealed that the single-chain variable fragment (scFv) accumulating in the plant and bacterial cytoplasm bears free sulfhydryl groups. Guanidinium chloride denaturation/renaturation studies indicated that refolding occurs even in a reducing environment, producing a functional molecule with the same spectral properties of the native scFv(Fs). Taken together, these results suggest that folding and functionality of this antibody fragment are not prevented in a reducing environment. This antibody fragment could therefore represent a suitable framework for engineering recombinant antibodies to be targeted to the cytoplasm.
1999
scFv fragment
intrabody
disulfide bond
cytosol
DISULFIDE BONDS
FV PROTEIN
TOBACCO
FLUORESCENCE
STABILITY
CYTOSOL
RESOLUTION
BACTERIAL
MUTATIONS
EVOLUTION
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/198477
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact