Proteins have a unique native conformation, which can be proven in many instances to be determined by the amino acid sequence alone. The folding problem, that is the understanding of how the amino acid sequence directs folding, is still unsolved, despite more than 30 years of effort. However, many new methods have appeared in the past few years. This chapter describes the different principles underlying them and tries to give an overview of their successes and pitfalls.

Protein structure prediction and design

Morea V;
1998

Abstract

Proteins have a unique native conformation, which can be proven in many instances to be determined by the amino acid sequence alone. The folding problem, that is the understanding of how the amino acid sequence directs folding, is still unsolved, despite more than 30 years of effort. However, many new methods have appeared in the past few years. This chapter describes the different principles underlying them and tries to give an overview of their successes and pitfalls.
1998
978-0-444-53226-8
ab initio methods
CASP
comparative modelling
energy function
fold recognition
force field
long-range interactions
loop
modelling by homology
multiple sequence alignmen
protein design
protein folds
residue conservation
rotamer
secondary structure prediction
sequence alignment
sequence pattern
side chains
structure prediction
threading
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/199220
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact