We describe an analytical method to calculate the strain field and the corresponding band gap modulation induced in a quantum well by a surface stressor of arbitrary shape. In this way, it is possible to engineer the confinement potential of different strained nanostructures based on patterned heterojunctions. Band gap modulations up to 130-140 meV are predicted for suitably designed II-VI/III-V and III-V/III-V heterostructures.

Engineering the strain field for the control of quantum confinement: An analytical model for arbitrary shape nanostructures

M Mazzer;M De Giorgi;E Molinari
1998

Abstract

We describe an analytical method to calculate the strain field and the corresponding band gap modulation induced in a quantum well by a surface stressor of arbitrary shape. In this way, it is possible to engineer the confinement potential of different strained nanostructures based on patterned heterojunctions. Band gap modulations up to 130-140 meV are predicted for suitably designed II-VI/III-V and III-V/III-V heterostructures.
1998
Istituto per la Microelettronica e Microsistemi - IMM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/200090
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 4
social impact