The probability distribution function of plasma density fluctuations at the edge of fusion devices is known to be skewed and strongly non-Gaussian. The causes of this peculiar behavior are, up to now, largely unexplored. On the other hand, understanding the origin and the properties of edge turbulence is a key issue in magnetic fusion research. In this paper we show that a stochastic fragmentation model, already successfully applied to fluid turbulence, is able to predict an asymmetric distribution that closely matches experimental data. The asymmetry is found to be a direct consequence of intermittency. A discussion of our results in terms of recently suggested Bramwell-Holdsworth-Pinton universal curve [S. T. Bramwell, P. C. W. Holdsworth, and J.-F. Pinton, Nature (London) 396, 552 (1998)], that should hold for strongly correlated and critical systems, is also proposed.

Statistical model for intermittent plasma edge turbulence

Vianello N
2005

Abstract

The probability distribution function of plasma density fluctuations at the edge of fusion devices is known to be skewed and strongly non-Gaussian. The causes of this peculiar behavior are, up to now, largely unexplored. On the other hand, understanding the origin and the properties of edge turbulence is a key issue in magnetic fusion research. In this paper we show that a stochastic fragmentation model, already successfully applied to fluid turbulence, is able to predict an asymmetric distribution that closely matches experimental data. The asymmetry is found to be a direct consequence of intermittency. A discussion of our results in terms of recently suggested Bramwell-Holdsworth-Pinton universal curve [S. T. Bramwell, P. C. W. Holdsworth, and J.-F. Pinton, Nature (London) 396, 552 (1998)], that should hold for strongly correlated and critical systems, is also proposed.
2005
Istituto gas ionizzati - IGI - Sede Padova
SELF-ORGANIZED CRITICALITY
PROBABILITY-DISTRIBUTION FUNCTION
FULLY-DEVELOPED TURBULENCE
ELECTROSTATIC TURBULENCE
ENERGY-TRANSFER
FUSION DEVICES
FLUCTUATIONS
SIMILARITY
TRANSPORT
SYSTEMS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/200614
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact