A compressible generalization of the Kraichnan model ?Phys. Rev. Lett. 72, 1016 ?1994?? of passive scalar advection is considered. The dynamical role of compressibility on the intermittency of the scalar statistics is investigated for the direct cascade regime. Simple physical arguments suggest that an enhanced intermittency should appear for increasing compressibility, due to the slowing down of Lagrangian trajectory separations. This is confirmed by a numerical study of the dependence of intermittency exponents on the degree of compressibility, by a Lagrangian method for calculating simultaneous N-point tracer correlations.

Passive scalar intermittency in compressible flow

A S Lanotte;
1999

Abstract

A compressible generalization of the Kraichnan model ?Phys. Rev. Lett. 72, 1016 ?1994?? of passive scalar advection is considered. The dynamical role of compressibility on the intermittency of the scalar statistics is investigated for the direct cascade regime. Simple physical arguments suggest that an enhanced intermittency should appear for increasing compressibility, due to the slowing down of Lagrangian trajectory separations. This is confirmed by a numerical study of the dependence of intermittency exponents on the degree of compressibility, by a Lagrangian method for calculating simultaneous N-point tracer correlations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/200685
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact