In this paper we provide a piecewise linear Galerkin approximation of a second order transmission problem across a highly conductive prefractal layer of von Koch type. We firstly generate an appropriate mesh adapted to the geometric shape of the interface and then we construct a refinement algorithm consistent with a suitable estimate in appropriate weighted Sobolev spaces. We also obtain a quasi-optimal error estimate in the energy norm and finally we demonstrate the validity of our theory through numerical tests.

Mesh generation and numerical analysis of a Galerkin method for highly conductive prefractal layers

A Buffa;
2013

Abstract

In this paper we provide a piecewise linear Galerkin approximation of a second order transmission problem across a highly conductive prefractal layer of von Koch type. We firstly generate an appropriate mesh adapted to the geometric shape of the interface and then we construct a refinement algorithm consistent with a suitable estimate in appropriate weighted Sobolev spaces. We also obtain a quasi-optimal error estimate in the energy norm and finally we demonstrate the validity of our theory through numerical tests.
2013
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
A priori error estimate
Adaptive mesh refinement
Finite element methods
Highly conductive layers
Transmission problems
File in questo prodotto:
File Dimensione Formato  
prod_270285-doc_102051.pdf

solo utenti autorizzati

Descrizione: Mesh generation and numerical analysis of a Galerkin method for highly conductive prefractal layers
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/20069
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact