The problem of anomalous scaling in magnetohydrodynamics turbulence is considered within the framework of the kinematic approximation, in the presence of a large-scale background magnetic field. The velocity field is Gaussian, ?-correlated in time, and scales with a positive exponent ?. Explicit inertial-range expressions for the magnetic correlation functions are obtained; they are represented by superpositions of power laws with nonuniversal amplitudes and universal ?independent of the anisotropy and forcing? anomalous exponents. The complete set of anomalous exponents for the pair correlation function is found nonperturbatively, in any space dimension d, using the zero-mode technique. For higher-order correlation functions, the anomalous exponents are calculated to O(?) using the renormalization group. The exponents exhibit a hierarchy related to the degree of anisotropy; the leading contributions to the even correlation functions are given by the exponents from the isotropic shell, in agreement with the idea of restored small-scale isotropy. Conversely, the small-scale anisot- ropy reveals itself in the odd correlation functions: the skewness factor is slowly decreasing going down to small scales and higher odd dimensionless ratios ?hyperskewness, etc.? dramatically increase, thus diverging in the r->0 limit.

Persistence of small-scale anisotropies and anomalous scaling in a model of magnetohydrodynamics turbulence

A S Lanotte;
2000

Abstract

The problem of anomalous scaling in magnetohydrodynamics turbulence is considered within the framework of the kinematic approximation, in the presence of a large-scale background magnetic field. The velocity field is Gaussian, ?-correlated in time, and scales with a positive exponent ?. Explicit inertial-range expressions for the magnetic correlation functions are obtained; they are represented by superpositions of power laws with nonuniversal amplitudes and universal ?independent of the anisotropy and forcing? anomalous exponents. The complete set of anomalous exponents for the pair correlation function is found nonperturbatively, in any space dimension d, using the zero-mode technique. For higher-order correlation functions, the anomalous exponents are calculated to O(?) using the renormalization group. The exponents exhibit a hierarchy related to the degree of anisotropy; the leading contributions to the even correlation functions are given by the exponents from the isotropic shell, in agreement with the idea of restored small-scale isotropy. Conversely, the small-scale anisot- ropy reveals itself in the odd correlation functions: the skewness factor is slowly decreasing going down to small scales and higher odd dimensionless ratios ?hyperskewness, etc.? dramatically increase, thus diverging in the r->0 limit.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/200699
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact