The mitochondrial aspartate/glutamate carrier catalyzes an important step in both the urea cycle and the aspartate/malate NADH shuttle. Citrin and aralar1 are homologous proteins belonging to the mitochondrial carrier family with EF-hand Ca2+-binding motifs in their N-terminal domains. Both proteins and their C-terminal domains were overexpressed in Escherichia coli, reconstituted into liposomes and shown to catalyze the electrogenic exchange of aspartate for glutamate and a H+. Overexpression of the carriers in transfected human cells increased the activity of the malate/aspartate NADH shuttle. These results demonstrate that citrin and aralar1 are isoforms of the hitherto unidentified aspartate/glutamate carrier and explain why mutations in citrin cause type II citrullinemia in humans. The activity of citrin and aralar1 as aspartate/glutamate exchangers was stimulated by Ca2+ on the external side of the inner mitochondrial membrane, where the Ca2+-binding domains of these proteins are localized. These results show that the aspartate/glutamate carrier is regulated by Ca2+ through a mechanism independent of Ca2+ entry into mitochondria, and suggest a novel mechanism of Ca2+ regulation of the aspartate/malate shuttle.
Citrin and aralar1 are Ca2+-stimulated aspartate/glutamate transporters in mitochondria
FM Lasorsa;
2001
Abstract
The mitochondrial aspartate/glutamate carrier catalyzes an important step in both the urea cycle and the aspartate/malate NADH shuttle. Citrin and aralar1 are homologous proteins belonging to the mitochondrial carrier family with EF-hand Ca2+-binding motifs in their N-terminal domains. Both proteins and their C-terminal domains were overexpressed in Escherichia coli, reconstituted into liposomes and shown to catalyze the electrogenic exchange of aspartate for glutamate and a H+. Overexpression of the carriers in transfected human cells increased the activity of the malate/aspartate NADH shuttle. These results demonstrate that citrin and aralar1 are isoforms of the hitherto unidentified aspartate/glutamate carrier and explain why mutations in citrin cause type II citrullinemia in humans. The activity of citrin and aralar1 as aspartate/glutamate exchangers was stimulated by Ca2+ on the external side of the inner mitochondrial membrane, where the Ca2+-binding domains of these proteins are localized. These results show that the aspartate/glutamate carrier is regulated by Ca2+ through a mechanism independent of Ca2+ entry into mitochondria, and suggest a novel mechanism of Ca2+ regulation of the aspartate/malate shuttle.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.