The generation of electron surface oscillations in overdense plasmas irradiated at normal incidence by an intense laser pulse is investigated. Two-dimensional (2D) particle-in-cell simulations show a transition from a planar, electrostatic oscillation at 2?, with ? the laser frequency, to a 2D electromagnetic oscillation at frequency ? and wave vector k>?/c. A new electron parametric instability, involving the decay of a 1D electrostatic oscillation into two surface waves, is introduced to explain the basic features of the 2D oscillations. This effect leads to the rippling of the plasma surface within a few laser cycles, and is likely to have a strong impact on laser interaction with solid targets.
Surface Oscillations in Overdense Plasmas Irradiated by Ultrashort Laser Pulses
Macchi A;
2001
Abstract
The generation of electron surface oscillations in overdense plasmas irradiated at normal incidence by an intense laser pulse is investigated. Two-dimensional (2D) particle-in-cell simulations show a transition from a planar, electrostatic oscillation at 2?, with ? the laser frequency, to a 2D electromagnetic oscillation at frequency ? and wave vector k>?/c. A new electron parametric instability, involving the decay of a 1D electrostatic oscillation into two surface waves, is introduced to explain the basic features of the 2D oscillations. This effect leads to the rippling of the plasma surface within a few laser cycles, and is likely to have a strong impact on laser interaction with solid targets.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.