The formation of Internal Transport Barriers (ITBs) has been experimentally associated with the presence of rational q-surfaces in both JET and ASDEX Upgrade. The triggering mechanisms are related to the occurrence of magneto-hydrodynamic (MHD) instabilities such as mode coupling or fishbone activity. These events could locally modify the poloidal velocity and increase transiently the shearing rate to values comparable to the linear growth rate of ITG modes. For JET reversed magnetic shear scenarios, ITB emergence occurs preferentially when the minimum q reaches an integer value. In this case, transport effects localised in the vicinity of zero magnetic shear and close to rational q values may also contribute to the formation of ITBs.The role of rational q surfaces on ITB triggering stresses the importance of q profile control for advanced tokamak scenario and could contribute to lower substantially the access power to these scenarios in next step facilities.

Internal transport barrier triggering by rational magnetic flux surfaces in tokamaks

E Lazzaro;
2003

Abstract

The formation of Internal Transport Barriers (ITBs) has been experimentally associated with the presence of rational q-surfaces in both JET and ASDEX Upgrade. The triggering mechanisms are related to the occurrence of magneto-hydrodynamic (MHD) instabilities such as mode coupling or fishbone activity. These events could locally modify the poloidal velocity and increase transiently the shearing rate to values comparable to the linear growth rate of ITG modes. For JET reversed magnetic shear scenarios, ITB emergence occurs preferentially when the minimum q reaches an integer value. In this case, transport effects localised in the vicinity of zero magnetic shear and close to rational q values may also contribute to the formation of ITBs.The role of rational q surfaces on ITB triggering stresses the importance of q profile control for advanced tokamak scenario and could contribute to lower substantially the access power to these scenarios in next step facilities.
2003
Istituto di fisica del plasma - IFP - Sede Milano
92-0-112203-9
___
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/201418
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact