Discovering predictive models for run-time support is an emerging topic in Process Mining research, which can effectively help optimize business process enactments. However, making accurate estimates is not easy especially when considering fine-grain performance measures (e.g., processing times) on a complex and flexible business process, where performance patterns change over time, depending on both case properties and context factors (e.g., seasonality, workload). We try to face such a situation by using an ad-hoc predictive clustering approach, where different context-related execution scenarios are discovered and modeled accurately via distinct state-aware performance predictors. A readable predictive model is obtained eventually, which can make performance forecasts for any new running process case, by using the predictor of the cluster it is estimated to belong to. The approach was implemented in a system prototype, and validated on a real-life context. Test results confirmed the scalability of the approach, and its efficacy in predicting processing times and associated SLA violations.
Discovering Context-Aware Models for Predicting Business Process Performances
Francesco Folino;Massimo Guarascio;Luigi Pontieri
2012
Abstract
Discovering predictive models for run-time support is an emerging topic in Process Mining research, which can effectively help optimize business process enactments. However, making accurate estimates is not easy especially when considering fine-grain performance measures (e.g., processing times) on a complex and flexible business process, where performance patterns change over time, depending on both case properties and context factors (e.g., seasonality, workload). We try to face such a situation by using an ad-hoc predictive clustering approach, where different context-related execution scenarios are discovered and modeled accurately via distinct state-aware performance predictors. A readable predictive model is obtained eventually, which can make performance forecasts for any new running process case, by using the predictor of the cluster it is estimated to belong to. The approach was implemented in a system prototype, and validated on a real-life context. Test results confirmed the scalability of the approach, and its efficacy in predicting processing times and associated SLA violations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


