A new class of hybrid organic/inorganic nanostructures, comprising self-organised discotic liquid crystal layers deposited on ultrathin metal films, has been investigated both experimentally and theoretically. Calculations show that the periodic self-organised molecular layer gives rise to a new, hybrid electronic bandstructure, resulting in modulation of the metal film conductivity. In situ conductivity measurements during deposition of such self-organised layers confirm that the metal film conductivity is altered. Theoretical modeling also shows that the AC conductivity should show structure related to the carrier trapping and one-dimensional transport features of the self-organised layer. (C) 2002 Elsevier Science B.V. All rights reserved.
Electronic properties of hybrid metal-discotic liquid crystal nanostructures
Pecchia A;
2003
Abstract
A new class of hybrid organic/inorganic nanostructures, comprising self-organised discotic liquid crystal layers deposited on ultrathin metal films, has been investigated both experimentally and theoretically. Calculations show that the periodic self-organised molecular layer gives rise to a new, hybrid electronic bandstructure, resulting in modulation of the metal film conductivity. In situ conductivity measurements during deposition of such self-organised layers confirm that the metal film conductivity is altered. Theoretical modeling also shows that the AC conductivity should show structure related to the carrier trapping and one-dimensional transport features of the self-organised layer. (C) 2002 Elsevier Science B.V. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


