Ab initio quantum mechanical numerical simulations have been used to study electronic transport in nanoscale electronic devices. We have developed a new code based on self-consistent density-functional tight-binding (DFTB) method and non-equilibrium Green's function (NEGF) formalism. Using this approach, we investigate the coherent transport properties of along semiconducting CNT when the source-drain current is modulated by a coaxial gate. Exact boundary conditions for the electrostatic potential in the coaxial gate geometry are taken into account solving in real space a 3D Poisson equation. Results stress the importance of a good electrostatic-design of the gate contact to obtain the same field-effect modulation we have in conventional planar MOSFET.

Simulation of carbon nanotube field-effect devices

Pecchia A;
2004

Abstract

Ab initio quantum mechanical numerical simulations have been used to study electronic transport in nanoscale electronic devices. We have developed a new code based on self-consistent density-functional tight-binding (DFTB) method and non-equilibrium Green's function (NEGF) formalism. Using this approach, we investigate the coherent transport properties of along semiconducting CNT when the source-drain current is modulated by a coaxial gate. Exact boundary conditions for the electrostatic potential in the coaxial gate geometry are taken into account solving in real space a 3D Poisson equation. Results stress the importance of a good electrostatic-design of the gate contact to obtain the same field-effect modulation we have in conventional planar MOSFET.
2004
0-7803-8536-5
carbon nanotube
CNTFET
molecular transistor
MOSFET
non-equilibrium Green's function
EFFECT TRANSISTORS
CAPACITANCE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/202122
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact