Channeling of relativistic particles in bent Si crystals is a powerful technique for use with accelerators. Its efficiency can be found to be highly dependent on the state of the surface of the crystal steering the particles. We investigated the morphology and structure of the surface of the samples that have been used with high efficiency for channeling in accelerators. Low-energy channeling of 2 MeV? particles or protons was used as a probe. We found that mechanical treatment of the samples leads to a superficial damaged layer, which is correlated to efficiency limitations of the crystal in accelerators. In contrast, chemical etching, which was used to treat the surface of the most efficient crystals, leaves a surface with superior perfection. © 2005 American Institute of Physics.

Low-energy-channeling surface analysis on silicon crystals designed for high-energy-channeling in accelerators

Vomiero;
2005

Abstract

Channeling of relativistic particles in bent Si crystals is a powerful technique for use with accelerators. Its efficiency can be found to be highly dependent on the state of the surface of the crystal steering the particles. We investigated the morphology and structure of the surface of the samples that have been used with high efficiency for channeling in accelerators. Low-energy channeling of 2 MeV? particles or protons was used as a probe. We found that mechanical treatment of the samples leads to a superficial damaged layer, which is correlated to efficiency limitations of the crystal in accelerators. In contrast, chemical etching, which was used to treat the surface of the most efficient crystals, leaves a surface with superior perfection. © 2005 American Institute of Physics.
2005
Low-energy channeling
Mechanical treatment
Relativistic particles
Superficial damaged layer
Etching
Morphology
Particle accelerators
Silicon
Surface treatment
Crystalline materials
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/20216
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact