A two-dimensional composite strategy given by Greco et al. [1] is applied to couple a linear global solution with a nonlinear local analysis. Globally a linear hydroelastic analysis is performed by an accurate Beam-On-Elastic-Foundation (BOEF) method. A parameter analysis of hydroelastic response of the structure is also carried out. Locally, a two-dimensional fully-nonlinear numerical wave tank (NWT) in combination with a Boundary Element Method (BEM) is developed to estimate the interaction between regular waves and the structure restrained from rigid and elastic motions. The effect of air cushion is considered. Present results are compared with experimental data and other numerical solutions.
Global Hydroelastic Analysis of Pontoon-type VLFS
Greco M;
2009
Abstract
A two-dimensional composite strategy given by Greco et al. [1] is applied to couple a linear global solution with a nonlinear local analysis. Globally a linear hydroelastic analysis is performed by an accurate Beam-On-Elastic-Foundation (BOEF) method. A parameter analysis of hydroelastic response of the structure is also carried out. Locally, a two-dimensional fully-nonlinear numerical wave tank (NWT) in combination with a Boundary Element Method (BEM) is developed to estimate the interaction between regular waves and the structure restrained from rigid and elastic motions. The effect of air cushion is considered. Present results are compared with experimental data and other numerical solutions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.