Posidonia oceanica seagrass litter is commonly found along sandy shores in the Mediterranean region, forming structures called banquettes, which are often removed in order to allow the beach to be used for tourism. This paper evaluates the relationship between the morphology and composition of banquettes and beach exposure to dominant waves. A Real Time Kinematic Differential Global Positioning System was used to evaluate the variability of banquettes and beach morphology over a period of 1 year. Banquette samples, collected at two different levels of the beach profile (i.e. foreshore and backshore), were used to evaluate the contribution of leaves, rhizomes and sediments to the total weight. Banquettes showed a higher volume, thickness and cross-shore length on exposed beaches, whereas narrower litter deposits were found on the sheltered beach. On exposed beaches, banquettes were deposited in beach zones characterized by changes in elevation. These changes in elevation were mainly due to the deposition and erosion of sediments and secondly to the deposition and or erosion of leaf litter. On sheltered beaches, the variability in beach morphology was low and was restricted to areas where the banquettes were located. The leaf/sediment ratio changed along the cross-shore profile. On the backshore, banquettes were a mixture of sediments and leaves, whereas leaves were the main component on the foreshore, independently of the beach exposure. The processes which control the morphodynamics in the swash zone could explain the variability of banquette composition along the cross-shore profile. Finally, this study highlighted that Posidonia oceanica seagrass litter plays an important role in the geomorphology of the beachface and its removal can have a harmful impact on the beaches.

Morphology and composition of beach-cast Posidonia oceanica litter on beaches with different exposures

Simeone S;De Falco G
2012

Abstract

Posidonia oceanica seagrass litter is commonly found along sandy shores in the Mediterranean region, forming structures called banquettes, which are often removed in order to allow the beach to be used for tourism. This paper evaluates the relationship between the morphology and composition of banquettes and beach exposure to dominant waves. A Real Time Kinematic Differential Global Positioning System was used to evaluate the variability of banquettes and beach morphology over a period of 1 year. Banquette samples, collected at two different levels of the beach profile (i.e. foreshore and backshore), were used to evaluate the contribution of leaves, rhizomes and sediments to the total weight. Banquettes showed a higher volume, thickness and cross-shore length on exposed beaches, whereas narrower litter deposits were found on the sheltered beach. On exposed beaches, banquettes were deposited in beach zones characterized by changes in elevation. These changes in elevation were mainly due to the deposition and erosion of sediments and secondly to the deposition and or erosion of leaf litter. On sheltered beaches, the variability in beach morphology was low and was restricted to areas where the banquettes were located. The leaf/sediment ratio changed along the cross-shore profile. On the backshore, banquettes were a mixture of sediments and leaves, whereas leaves were the main component on the foreshore, independently of the beach exposure. The processes which control the morphodynamics in the swash zone could explain the variability of banquette composition along the cross-shore profile. Finally, this study highlighted that Posidonia oceanica seagrass litter plays an important role in the geomorphology of the beachface and its removal can have a harmful impact on the beaches.
2012
Banquette
Beaches
Wave exposure
Leaf litter
Posidonia oceanica
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/204222
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 62
social impact